ESA Climate Change Initiative Phase-II

Sea Surface Temperature (SST)

www.esa-sst-cci.org

SATELLITE-BASED SEA SURFACE TEMPERATURE CLIMATE DATA RECORDS

Chris Merchant
Hurricane wakes

- Wentz et al, Science, 2000
SST CCI v1.1 L4 analysis

15-07-1998
SST CCI v1.1 L4 analysis

Analysis of IR SSTs was capable of representing the cold wake ahead of Danielle.
Air-sea coupling strength

3 different pairs of observational data

Clearest relationship, strongest coupling with SST CCI analysis

Malcolm Roberts
UKMO

change in wind-stress resulting from change in SST across a front
Ambitions for SST CCI

An independent timeseries of SST that has sufficient length, uncertainty and stability to provide improved quantification of SST variability and change

Target characteristics

- **Independence**
 - based on physics of radiative transfer and harmonisation, not dependent empirical tuning to other SST measurements

- Early 1980s to present
 - includes the particular challenge of the El Chichon and Pinatubo/Hudson periods

- **High stability, high SST sensitivity, and low bias**

- Integrated processing across levels 2 to 4 (swath, gridded and analysis)

- **Uncertainty-quantified** at all levels

- **Skin SST** (core retrieval) and **20-cm daily average estimates** (model)
Sea Surface Temperature CCI

ATSRs: dual view, stable & accurate. Use as SST calibration reference.

AVHRRs: single view, not designed for climate, good coverage and a longer history.

ATSRs & AVHRRs are blended. Using an improved version of Met Office “OSTIA”.
ATSR-series BT harmonisation concept

- ATSR-1 12 um
- ATSR-1 11 um
- ATSR-1 3.7 um
- ATSR-2 12 um
- ATSR-2 11 um
- ATSR-2 3.7 um

+ ARB recommendation

AATSR 12 um

AATSR 11 um

AATSR 3.7 um
Examples of the BT adjustments

Some inter-sensor differences are expected because of known spectral response function differences

The residuals (S – O) are calibration differences that are parameterised in terms of TCWV

Suggests SRF errors are underlying source of residuals
SST harmonisation

\[\hat{x} = a_0 + \sum_{\text{channels}, i} a_i T_i \]

BT harmonisation removes a large portion of inter-sensor SST inconsistency, but not all.

Therefore we also harmonise SST retrievals during sensor overlaps.

The reference SST retrieval is the dual-view 3-channel (D3) of AATSR.

In each case of an “SST harmonisation” step the following is done:

- matched retrievals of different types/sensors are obtained
- for each band of coefficients for TCWV, the offset coefficient is adjusted to match the SSTs of the reference retrieval on average

Offset adjustments are typically of order 0.1 K.
SST harmonisation logic

ATSR-1 D3 BOL

ATSR-1 D2 EOL

Transition

ATSR-2 Dual-3 SST

ATSR-2 D2 (+N2, N3)

AATSR Dual-3 SST

AATSR Dual-2 (+N2, N3)

Drifting buoy matches

ATSR-1 D2 BOL

ATSR-1 Detector temperature trend

October 2017
Use GTMBA as pre- and post-calibrated reference for long-term comparison

Deviations within target 0.1 K except last few months of ATSR-1 lifetime

ATSR-series harmonisation outcome
Step change detection against drifters (ATSR 2+AATSR)
AATSR validation at different depths

<table>
<thead>
<tr>
<th>Day/night</th>
<th>N</th>
<th>In situ</th>
<th>Depth</th>
<th>Dual 2-chan</th>
<th>Dual 3-chan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Night</td>
<td>302</td>
<td>Radiom.</td>
<td>Skin</td>
<td>0.013 (0.217)</td>
<td>0.003 (0.187)</td>
</tr>
<tr>
<td>Night</td>
<td>135129</td>
<td>Drifters</td>
<td>20 cm</td>
<td>-0.002 (0.182)</td>
<td>0.001 (0.156)</td>
</tr>
<tr>
<td>Night</td>
<td>12590</td>
<td>GTMBM</td>
<td>1 m</td>
<td>-0.011 (0.181)</td>
<td>-0.001 (0.129)</td>
</tr>
<tr>
<td>Day</td>
<td>273</td>
<td>Radiom.</td>
<td>Skin</td>
<td>-0.000 (0.200)</td>
<td></td>
</tr>
<tr>
<td>Day</td>
<td>166218</td>
<td>Drifters</td>
<td>20 cm</td>
<td>0.026 (0.178)</td>
<td></td>
</tr>
<tr>
<td>Day</td>
<td>10312</td>
<td>GTMBM</td>
<td>1 m</td>
<td>0.007 (0.180)</td>
<td></td>
</tr>
</tbody>
</table>

Validating against in situ at skin, 20 cm and 1 m means we can assess the results of both the skin SST retrieval and the model used to adjust to SST-depth (user requirement to blend CDR with centennial SST data)
AATSR D2 SST based on coefficients 0.1 deg cells

SD of sat-buoy discrepancy / cK

SST uncertainty estimate / cK
Here the present total uncertainty in drifting buoy measurements becomes limiting: validation of uncertainty estimates below about 0.2 K is not very sensitive to true satellite uncertainty (buoys’ u dominates).
Uncertainty validation

“Normal” drifting buoys are limiting for validating estimated uncertainties of 0.15 to 0.25 K

Current drifters

Accuracy

~ 0.05 K

Argo

Single
Sensor
Error
Statistics
CONCLUSIONS

For recent satellite era (1996 onwards), harmonisation at BT and SST levels can support independent satellite CDR based on radiative transfer physics.

Going further back, in situ observations become both sparser and less certain
- Stability of drifting buoy record in particular is poorly known

We want to validate skin, drifting buoy depth and mooring depth SST estimates
- skin retrieval + model-mediated depth estimates

Improved drifters not only will make us more confident about SSTs, but also about our estimates of uncertainty at finer scales.