

The quality of Sea Surface Temperature observations from drifting buoys and the role of the natural variability Christoforos Tsamalis christoforos.tsamalis@metoffice.g

Sea Surface Temperature (SST)

- Consists the lower boundary condition for NWP and climate models (e.g. OSTIA, HadISST).
- Climate monitoring with observations since ~1850
 (e.g. HadSST3).
- Determines the exchange of fluxes in the interface ocean/atmosphere.
- Note the variation of SST with measurement depth.

SST observation methods

• Satellite retrievals based on infrared (IR) and microwave (MW) observations.

Sensor Type	Spatial resolution	Limitations	Depth penetration
IR radiometer	1-4 km (nadir)	Cloud-free scenes, impact from aerosols	~10-20 µm
MW radiometer	25-50km	Precipitating clouds	~1-1.5 mm

- Ships (Ships of Opportunity Programme [SOOP] or research vessels).
- Moored and drifting buoys.
- Argo profilers.

A closer look to drifting buoys

- Positioning using mainly Argos system, with accuracy ~500 m (Lopez et al., 2014).
- SST is sampled continuously with a 15-minute repeat cycle (DBCP, 2009).

- Interval between samples = 60 s.
- Number of samples averaged = 15.
- SST updated every 15 minutes.
- Number of thermistors monitored = 1 (YSI 44018 or equivalent).

One or more types of drifting buoys?

- AMSR-E and NAVOCEANO analysis SST do not show significant difference (Castro et al., 2012).
- Use of limited number of pairs indicate nonnegligible differences (Reverdin et al., 2013).

Rationale

- Drifting buoys are the backbone of the SST observational array providing global coverage (vs. moored buoys) and better quality observations (vs. ships).
- They are used extensively for the calibration and/or validation of SST retrievals from satellite instruments.
- It is widely believed that the random uncertainty of SST observations from drifting buoys is ~0.2 K.

Is it correct?

The starting point

- Triple collocation (O'Carroll et al., 2008)
- Same datasets for MW and drifting buoys.

© Crown Copyright 2016, Met Office

Uncertainty model

 An instrument (X) with systematic uncertainty (b_x) and random uncertainty (e_x) makes observations of the measurand T:

$$X = T + b_X + e_X$$
$$E[b_X] = \beta_X, \qquad E[e_X] = 0, \qquad Var[e_X] = \sigma_X^2$$

 For another instrument (Y) located "nearby" similar equations hold, with ΔT denoting the change of T with space (Δr) and/or time (Δt):

$$Y = T + \Delta T + b_Y + e_Y$$

Mean value of the difference

$$\mu = E[Y - X] = E[\Delta T + b_Y - b_X + e_Y - e_X]$$
$$= E[\Delta T] + E[b_Y] - E[b_X] + E[e_Y] - E[e_X]$$
$$= \mu_{\Delta T} + \beta_Y - \beta_X$$
$$= \beta_Y - \beta_X$$

 $\mu_{\Delta T}$ stands for the mean value of ΔT , which is expected to be 0 at least on global scale.

Variance of the difference $\sigma^2 \equiv Var[Y - X] = Var[\Delta T + b_y - b_x + e_y - e_y]$ $= Var[\Delta T] + Var[b_y - b_x] + Var[e_y - e_x]$ $= \sigma_{\Lambda T}^{2} + \sigma_{\Lambda B}^{2} + Var[e_{Y}] - 2Cov[e_{Y}, e_{X}] + Var[e_{X}]$ $=\sigma_{\Lambda T}^2+\sigma_{\Lambda B}^2+\sigma_{Y}^2+\sigma_{X}^2$ Assumptions

- I. No correlation between ΔT and uncertainties and between uncertainties.
- II. The random uncertainties are uncorrelated, Jight 2016, Met O

One equation – 4 unknowns

$$\sigma^2 = \sigma_{\Delta T}^2 + \sigma_{\Delta \beta}^2 + \sigma_Y^2 + \sigma_X^2$$

 For every one of the right hand terms the following inequality holds, because all terms are quadratic (e.g. for ΔT):

$$\sigma_{\Delta T}^2 \leq \sigma^2 \Longrightarrow \sigma_{\Delta T} \leq \sigma$$

• Given that ΔT depends on Δr and Δt , when space and time differences are sufficiently small (i.e. for the measuring standards of the instruments) then:

$$\Delta T \xrightarrow{\Delta r, \Delta t \to 0} 0$$

Ο

Application to drifting buoys (DB) Both X and Y are DB i.e.:

$$\beta_X = \beta_Y = \beta_{DB} \Longrightarrow \mu = 0$$
 Ideally for mean

$$\sigma_{Y} = \sigma_{X} = \sigma_{DB} \Longrightarrow \sigma^{2} = \sigma_{\Delta T}^{2} + \sigma_{\Delta \beta}^{2} + 2\sigma_{DB}^{2}$$
$$\sigma_{DB}^{2} = \frac{\sigma^{2} - \sigma_{\Delta \beta}^{2} - \sigma_{\Delta T}^{2}}{2}$$

$$\sigma_{\Delta\beta}^{2} = Var[b_{Y} - b_{X}] = Var[b_{Y}] - 2Cov[b_{Y} * b_{X}] + Var[b_{X}]$$
$$= \sigma_{\beta}^{2} - 2 * \rho_{\beta} * \sigma_{\beta} * \sigma_{\beta} + \sigma_{\beta}^{2} = 2 * \sigma_{\beta}^{2}(1 - \rho_{\beta})$$

www.metoffice.gov.uk

Application to DB (continuing)

Semivariogram!

• Ideally the correlation of the systematic uncertainty is totally correlated [assumption III].

$$\sigma_{\Delta\beta}^2 = 2 * \sigma_{\beta}^2 (1 - \rho_{\beta}) = 0$$

$$\sigma_{DB}^{2} = \frac{\sigma^{2} - \sigma_{\Delta\beta}^{2} - \sigma_{\Delta T}^{2}}{2} \Longrightarrow \sigma_{DB}^{2} = \frac{\sigma^{2} - \sigma_{\Delta T}^{2}}{2}$$

$$\xrightarrow{\Delta r, \Delta t \to 0 \Rightarrow \sigma_{\Delta T} \to 0} \to \sigma_{DB}^2 = -\frac{\sigma_{DB}^2}{2}$$

Assumption IV: Negligible natural variability

Importance of the model

- Both semivariogram and tiple collocation (3-way error analysis) make *de facto* these four $\sigma_{DB} = -\frac{1}{2}$ assumptions!!! $\sigma_{DB} = -\frac{1}{2}$ In reality it's not a new model, just reveals the limitations/assumptions.
- The standard deviation is the upper bound for natural variability (representetativeness), random uncertainties and variance of the systematic uncertainties (under two assumptions).

Not accounted generally!

Dataset

- HadIOD1.2.0.0 (Atkinson et al., 2013, 2014)
- Drifting buoys from 1979 to 2015.
- 3 options/2 quality control (QC) flags:
 - **Basic QC** i.e. these used in HadSST2 (Rayner et al., 2006)
 - Basic QC + Tracking i.e. using OSTIA reanalysis SST, available only after 1985
 - Basic QC + Tracking + Night time

Monthly numbers

- Basic QC removes ~ 3%, although more in early years.
- Number of observations gradually increases to 6 millions.

Unique drifting buoys

According to JCOMMOPS there 1620 buoys in July 2016, but in HadIOD we never overpass 1400.

Not all drifting buoys report every day.

© Crown Copyright 2016, Met Office

Histograms – Basic QC

www.metoffice.gov.uk

6 ad hoc collocation windows

© Crown Copyright 2016, Met Office

Histograms – QC + Tracking

www.metoffice.gov.uk

Histograms – QC + T + Night

www.metoffice.gov.uk

Focus on quantitative results

Window	Basic QC		Basic QC and tracking			Night basic QC and tracking			
	μ	σ	N	μ	σ	N	μ	σ	N
20 km – 4 h	0.0020	0.390	18575671	0.0013	0.341	18245342	-0.0026	0.311	6114196
10 km – 3 h	0.0052	0.348	6254533	0.0037	0.279	6119293	0.0024	0.239	2161970
5 km – 90 min	0.0063	0.328	1565097	0.0035	0.244	1518603	0.0044	0.206	588254
3 km – 60 min	0.0040	0.328	712259	0.0027	0.258	690620	0.0049	0.197	271221
2 km – 30 min	0.0007	0.333	247620	0.0007	0.249	238305	0.0042	0.197	96969
1 km – 10 min	-0.0016	0.411	54363	-0.0009	0.333	51364	0.0040	0.225	21360

- Global mean value is always smaller than ±0.01 K.
 not identical systematic uncertainty
- Standard deviation does not decrease with window size!!! Impact of QC, note behaviour for 1 km – 10 min.

Random uncertainty and SST natural variability

- 10 km 3 h: $\sigma_{\Delta T}$ =0.13 K similar to σ_{DB} (0.14 K)!
- 20 km 4 h: $\sigma_{\Delta T}$ =0.24 K almost double of σ_{DB} .

Another view of histograms

Histograms for the 2 big windows

- Tracking with OSTIA clearly removes bad observations above ± 2 K.
- There still room for improvement.

© Crown Copyright 2016, Met Office

What the percentages tell us?

Window	Basic QC			Basic QC and tracking			Night basic QC and tracking		
	P[0.1]	P[0.4]	P[0.9]	P[0.1]	P[0.4]	P[0.9]	P[0.1]	P[0.4]	P[0.9]
20 km – 4 h	61.9	89.6	96.9	62.5	90.4	97.5	65.8	91.8	97.9
10 km – 3 h	72.5	93.4	97.7	73.5	94.4	98.4	77.1	95.6	98.8
5 km – 90 min	80.0	95.1	97.8	81.7	96.5	98.7	83.6	97.2	99.0
3 km – 60 min	83.2	95.4	97.7	84.9	96.7	98.5	86.9	97.6	99.0
2 km – 30 min	84.9	95.4	97.5	86.9	97.0	98.4	88.0	97.6	98.9
1 km – 10 min	85.6	94.3	96.5	88.4	96.2	97.7	90.1	97.5	98.7

- While P[0.1] always increases with decreasing window it is not the case for the other two.
- 99% of DB difference is below or equal to ± 0.9 K.

Time-series: 20 km – 4 h

Before 1990 less than ~1000 collocations.

86-90 all collocations passed tracking QC.

1995 peak!!!

© Crown Copyright 2016, Met Office

Time-series: 10 km – 3 h

Limit to 1990 onwards.

Tracking reduces 1995 peak, but it does not remove the peaks after 2010.

P[0.9] stable, but P[0.1] improves!

www.metoffice.gov.uk

Time-series: 5 km – 90 min

St. deviation is stratified with window after 2005, but not always before.

Peculiar 2005 for 5 km – 90 min.

 σ is stable-ish since 2002.

Geographical distribution

80

60

(ded) 20

b
 -40
 -60
 -60
 -80
 -150 - 120 - 90
 -60
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30
 -30

St. deviation (K) with basic QC and tracking - night

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Mean is very different from 0 K for some grid boxes.

 σ is generally higher over ocean currents, although some points looks strange.

www.metoffice.gov.uk

Conclusions

- Drifting buoys SST random uncertainty is at most 0.14 K using night collocations and tracking. → SST natural variability should be taken into account above scales of 5 km - 90 min (*currently*).
- Performance is variable with time, being of lower quality in early 80s and 1995 compared to 1988-1994 and 2002-2015.
- OSTIA tracking is doing a reasonable job, but there is still need/room for improvement.
 - need for higher resolution? diurnal cycle?

Thank you!

Questions?

